On The GICAR Algebra and The Hausdorff Moment Problem

September 12, 2025Freeman Cheng math

Abstract

This report was written for course on K-Theory and $C^*$ Algebras taught by Prof. George Elliott in 2023, produced after many hints from Prof. Elliott.

We compute the ordered $K_0$ group associated of the GICAR (Gauge Invariant Canonical Anticommutation Relation) Algebra and use it to solve the Hausdorff moment problem.

GICAR Algebra and Its Ordered Group

Definition (GICAR algebra). The GICAR algebra is the AF algebra described by the following ($C^*$-algebra inductive limit) Bratteli diagram–Pascal’s triangle. https://q.uiver.app/?q=WzAsOSxbMiwwLCJcXGJ1bGxldCJdLFsxLDEsIlxcYnVsbGV0Il0sWzMsMSwiXFxidWxsZXQiXSxbMCwyLCJcXGJ1bGxldCJdLFsyLDIsIlxcYnVsbGV0Il0sWzQsMiwiXFxidWxsZXQiXSxbMCwzLCJcXHZkb3RzIl0sWzIsMywiXFx2ZG90cyJdLFs0LDMsIlxcdmRvdHMiXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMiwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDNdLFsxLDQsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMiw0LCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsNSwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dXQ==

Let’s first compute its $K_0$ group.

Theorem ($K_0$ of GICAR). Continuity of $K_0$ (Theorem 6.3.2 in rørdam_larsen_laustsen_2010) means the $K_0$ group of the GICAR algebra is described by the following (group inductive limit) Bratteli diagram. https://q.uiver.app/?q=WzAsOSxbMiwwLCJcXG1hdGhiYntafSJdLFsxLDEsIlxcbWF0aGJie1p9Il0sWzMsMSwiXFxtYXRoYmJ7Wn0iXSxbMCwyLCJcXG1hdGhiYntafSJdLFsyLDIsIlxcbWF0aGJie1p9Il0sWzQsMiwiXFxtYXRoYmJ7Wn0iXSxbMCwzLCJcXHZkb3RzIl0sWzIsMywiXFx2ZG90cyJdLFs0LDMsIlxcdmRvdHMiXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMiwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDMsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSw0LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsNCwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsyLDUsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XV0=

Note that the edges represent the group homomorphism taking $1\mapsto 1.$ This group is $\mathbb{Z}[x]$.

Proof. $K_0$ of the GICAR algebra is isomorphic to the group generated by the following Bratteli diagram (*). https://q.uiver.app/?q=WzAsOSxbMiwwLCJcXGxhbmdsZSAxIFxccmFuZ2xlIl0sWzEsMSwiXFxsYW5nbGUgeCBcXHJhbmdsZSJdLFszLDEsIlxcbGFuZ2xlIDEgLSB4IFxccmFuZ2xlIl0sWzAsMiwiXFxsYW5nbGUgeF4yIFxccmFuZ2xlIl0sWzIsMiwiXFxsYW5nbGUgeCgxIC0geCkgXFxyYW5nbGUiXSxbNCwyLCJcXGxhbmdsZSAoMSAtIHgpXjIgXFxyYW5nbGUiXSxbMCwzLCJcXHZkb3RzIl0sWzIsMywiXFx2ZG90cyJdLFs0LDMsIlxcdmRvdHMiXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMiwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDMsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSw0LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsNCwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsyLDUsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XV0= where each entry is a subgroup of $\mathbb{Z}[x].$ For proof, consider the following diagram, where the red arrows map generator to generator, where the generator for $\mathbb{Z}$ is $1$. https://q.uiver.app/?q=WzAsMTgsWzIsMCwiXFxtYXRoYmJ7Wn0iXSxbMSwxLCJcXG1hdGhiYntafSJdLFszLDEsIlxcbWF0aGJie1p9Il0sWzAsMiwiXFxtYXRoYmJ7Wn0iXSxbMiwyLCJcXG1hdGhiYntafSJdLFs0LDIsIlxcbWF0aGJie1p9Il0sWzAsMywiXFx2ZG90cyJdLFsyLDMsIlxcdmRvdHMiXSxbNCwzLCJcXHZkb3RzIl0sWzgsMCwiXFxsYW5nbGUgMSBcXHJhbmdsZSJdLFs3LDEsIlxcbGFuZ2xlIHggXFxyYW5nbGUiXSxbOSwxLCJcXGxhbmdsZSAxIC0geCBcXHJhbmdsZSJdLFs2LDIsIlxcbGFuZ2xlIHheMiBcXHJhbmdsZSJdLFs4LDIsIlxcbGFuZ2xlIHgoMSAtIHgpIFxccmFuZ2xlIl0sWzEwLDIsIlxcbGFuZ2xlICgxIC0geCleMiBcXHJhbmdsZSJdLFs2LDMsIlxcdmRvdHMiXSxbOCwzLCJcXHZkb3RzIl0sWzEwLDMsIlxcdmRvdHMiXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMiwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDMsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSw0LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsNCwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsyLDUsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbOSwxMCwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs5LDExLCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEwLDEyLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEwLDEzLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzExLDEzLCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzExLDE0LCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsOSwiIiwxLHsiY3VydmUiOi0zLCJjb2xvdXIiOlswLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn19fV0sWzIsMTEsIiIsMSx7ImN1cnZlIjotMywiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6ImFycm93aGVhZCJ9fX1dLFsxLDEwLCIiLDEseyJjdXJ2ZSI6LTMsImNvbG91ciI6WzAsNjAsNjBdLCJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJhcnJvd2hlYWQifX19XSxbMywxMiwiIiwxLHsiY3VydmUiOi0zLCJjb2xvdXIiOlswLDYwLDYwXSwic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn19fV0sWzQsMTMsIiIsMSx7ImN1cnZlIjotMywiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6ImFycm93aGVhZCJ9fX1dLFs1LDE0LCIiLDEseyJjdXJ2ZSI6LTMsImNvbG91ciI6WzAsNjAsNjBdLCJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJhcnJvd2hlYWQifX19XV0= Observe that in each triangle of (*), we have $A = B + C$ (**). https://q.uiver.app/?q=WzAsNixbMSwxLCJcXGxhbmdsZSBBIFxccmFuZ2xlIl0sWzAsMiwiXFxsYW5nbGUgQlxccmFuZ2xlIl0sWzIsMiwiXFxsYW5nbGUgQyBcXHJhbmdsZSJdLFswLDMsIlxcdmRvdHMiXSxbMiwzLCJcXHZkb3RzIl0sWzEsMCwiXFx2ZG90cyJdLFswLDEsIiIsMSx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMCwyLCIiLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d Therefore, we can treat the group direct sums as simply addition: ie. we can treat $\langle x^2\rangle\oplus \langle x(1 - x)\rangle\oplus \langle (1 - x)^2\rangle$ as $\langle a_1x^2 + a_2x(1 - x) + a_3(1 - x)^2\ |\ a_i\in \mathbb{Z}\rangle.$ Moreover, (**) means that $\langle a_1x^n + a_2x^{n - 1}(1 - x) + … + a_n(1 - x)^n\ |\ a_i\in \mathbb{Z}\rangle = \mathbb{Z}[x]_{\le n}$ (degree $\le$ $n$) because $1, x, …, x^n$ belong to this subgroup and the max degree polynomial in the subgroup is degree $n.$ Thus, the $K_0$ group we are computing is the inductive limit https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1hdGhiYntafVt4XV97XFxsZSAwfSJdLFsyLDAsIlxcbWF0aGJie1p9W3hdX3tcXGxlIDF9Il0sWzQsMCwiXFxtYXRoYmJ7Wn1beF1fe1xcbGUgMn0iXSxbNiwwLCJcXGNkb3RzIl0sWzAsMSwiXFxpb3RhXzAiXSxbMSwyLCJcXGlvdGFfMSJdLFsyLDMsIlxcaW90YV8yIl1d where the connecting maps are inclusions by (**). Hence, our group must be $\mathbb{Z}[x].$∎

Now let’s take a look at the ordered $K_0$ group. We first present a result of Halperin in Czarnecki1964.

Lemma (Halperin’s Lemma). Let $p(x)\in \mathbb{R}[x]$ be non-negative on the interval $[a, b].$ Then, $p(x)$ is the sum of the following forms: $(x - a)q(x)^2,$ $(b - x)q(x)^2,$ $q(x)^2$ where $q(x)\in \mathbb{R}[x].$

Proof. We proceed by induction on the degree of $p(x).$ If $p(x) = c,$ then we can write $c = (\sqrt{c})^2.$ Now suppose $p(x)$ is a degree $n\ge 1$ polynomial. Taking $m = \min_{x\in [a, b]} p(x),$ we have $p(x) = p(x) - m + (\sqrt{m})^2,$ so it suffices to prove the hypothesis for $p(x) - m.$ Since $m = \min_{x\in [a, b]} p(x),$ we can factor $p(x) - m = (x - r)q(x)$ for some $r\in [a, b].$ Here we consider two cases.

  1. If $r\in (a, b),$ then $q(r) = 0$ since $x - r$ changing sign as $x$ passes $r$ forces $q(x)$ to change sign with it. Hence, $p(x) - m = (x - r)q(x) = (x - r)^2s(x).$ Since $\deg s(x) < n,$ we can invoke inductive hypothesis and are done.

  2. Suppose $r = a$ or $r = b.$ Without loss of generality, suppose $r = a,$ for the $r = b$ case is symmetric. We have $p(x) - m = (x - a)q(x).$ Since $\deg q(x) < n,$ we know $q(x)$ is the sum of the forms $(x - a)s(x)^2,$ $(b - x)s(x)^2,$ $s(x)^2.$ It suffices to prove that our inductive hypothesis holds for $p(x) - m$ when $q(x) = (b - x)s(x)^2.$ Observe that

    \(\begin{aligned} (x - a)(b - x) &= (x - a)(b - x)\frac{(x - a + b - x)}{b - a}\\ &= \frac{1}{b - a}[(b - x)(x - a)^2 + (x - a)(b - x)^2]. \end{aligned}\)

    Since $\frac{1}{b - a} > 0,$ we can put $\frac{1}{\sqrt{b - a}}$ into each of the squares. Then, $p(x) - m$ satisfies our inductive hypothesis. ∎

Lemma (Basis for Positive Cone). A polynomial $p(x)\in \mathbb{Z}[x]$ is non-negative on ${0, 1}$ and strictly positive on $(0, 1)$ if and only if it can be written as \(p(x) = \sum_k a_kx^{e_k}(1 - x)^{f_k}\) where $a_k\in \mathbb{Z}$ and $a_k > 0.$

Proof. The $\impliedby$ direction is easy. Let’s consider the $\implies$ direction. Suppose $p(x)\in \mathbb{Z}[x]$ is non-negative on ${0, 1}$ and strictly positive on $(0, 1).$ We will proceed by induction on the degree of $p(x)$. It’s clear $p(x)\neq 0.$ If $p(x)$ is degree $0,$ $p(x) = c > 0.$ Note that $c = cx + c(1 - x).$ Suppose that the hypothesis holds when $\deg p(x)\le n.$ By Halperin’s Lemma, we are done. ∎

Remark. One can see that we can swap $\mathbb{Z}$ with $\mathbb{R}$ without any problems.

Theorem (Ordered $K_0$ of GICAR). The ordered $K_0$ group of GICAR is $\mathbb{Z}[x],$ where $\mathbb{Z}[x]^+$ consists of $0$ and elements of $\mathbb{Z}[x]$ that are non-negative on ${0, 1}$ and strictly positive on $(0, 1).$

Proof. A direct consequence of continuity of $K_0$ (Theorem 6.3.2 in rørdam_larsen_laustsen_2010) and the Basis for Positive Cone Lemma. ∎

Hausdorff Moment Problem

The Hausdorff moment problem asks for necessary and sufficient conditions for a sequence $a_0, a_1, …$ to satisfy \(a_k = \int_0^1 x^k\ d\mu(x)\) for some positive measure $\mu.$ We will henceforth suppress the integration bounds.

Theorem (Necessary condition). Let $a_0, a_1, …$ satisfy \(a_k = \int x^k\ d\mu(x)\) for some positive measure $\mu.$ Then, the Pascal triangle generated by writing $a_0, a_1, …$ along the left diagonal must have non-negative entries, ie. every entry in the following diagram must be non-negative. https://q.uiver.app/?q=WzAsMTAsWzMsMCwiYV8wIl0sWzIsMSwiYV8xIl0sWzEsMiwiYV8yIl0sWzQsMSwiYV8wIC0gYV8xIl0sWzMsMiwiYV8xIC0gYV8yIl0sWzAsMywiYV8zIl0sWzIsMywiYV8yIC0gYV8zIl0sWzQsMywiXFxkZG90cyJdLFs1LDIsIlxcZGRvdHMiXSxbNiwzLCJcXGRkb3RzIl0sWzAsMSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFswLDMsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSwyLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEsNCwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFszLDQsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMyw4LCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsNSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsyLDYsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbNCw2LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzQsNywiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs4LDcsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbOCw5LCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d&macro_url=%5Cdef%5Crddots%231%7B%5Ccdot%5E%7B%5Ccdot%5E%7B%5Ccdot%5E%7B%231%7D%7D%7D%7D

Proof. Integral of positive function with respect to positive measure is positive. Thus, our condition is indeed a necessary condition because by replacing the values in the Pascal triangle with their integral counterparts, we get the following diagram. https://q.uiver.app/?q=WzAsOSxbMywwLCJcXGludCAxXFwgZFxcbXUoeCkiXSxbMiwxLCJcXGludCB4XFwgZFxcbXUoeCkiXSxbNCwxLCJcXGludCAxIC0geFxcIGRcXG11KHgpIl0sWzMsMiwiXFxpbnQgeCgxIC0geClcXCBkXFxtdSh4KSJdLFswLDMsIlxcaW50IHheM1xcIGRcXG11KHgpIl0sWzEsMiwiXFxpbnQgeF4yXFwgZFxcbXUoeCkiXSxbMiwzLCJcXGludCB4XjIoMSAtIHgpXFwgZFxcbXUoeCkiXSxbNSwyXSxbNCwzXSxbMCwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMiwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDMsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMiwzLCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEsNSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs1LDQsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbNSw2LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzMsNiwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsyLDcsIlxcZGRvdHMiLDIseyJvZmZzZXQiOi01LCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJub25lIn0sImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMyw4LCJcXGRkb3RzIiwyLHsib2Zmc2V0IjotNSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoibm9uZSJ9LCJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d&macro_url=%5Cdef%5Crddots%231%7B%5Ccdot%5E%7B%5Ccdot%5E%7B%5Ccdot%5E%7B%231%7D%7D%7D%7D ∎

Lemma (Approximation by Positive Polynomials). Functions $f\in C([0, 1])$ such that $f\ge 0$ can be uniformly approximated by polynomials that are strictly positive on $[0, 1].$

Proof. Let $f\in C([0, 1])$ where $f\ge 0$ and $\epsilon > 0$ be arbitrary. Observe that $\sqrt{f}\in C([0, 1])$ so for any $\delta > 0,$ by the Weierstrass theorem, there exist a polynomial $p$ such that $\sup_{x\in [0, 1]} |\sqrt{f(x)} - p(x)| < \delta.$ Let $M = \sup_{x\in [0, 1]} |\sqrt{f(x)}|.$ We have

\(\begin{aligned} |f(x) - p(x)^2| &= |\sqrt{f(x)} - p(x)|\cdot |\sqrt{f(x)} - \sqrt{f(x)} + \sqrt{f(x)} + p(x)|\\ &\le \delta\cdot (|p(x) - \sqrt{f(x)}| + 2|\sqrt{f(x)}|)\\ &\le \delta\cdot (\delta + 2M)\\ &\rightarrow 0. \end{aligned}\)

This means that there exists a polynomial $q\ge 0$ such that $\sup_{x\in [0, 1]} |f(x) - q(x)| < \frac{\epsilon}{2}.$ Then, take $q(x) + \frac{\epsilon}{2}$ to be our strictly positive approximating polynomial: $\sup_{x\in [0, 1]} |f(x) - (q(x) + \frac{\epsilon}{2})| < \epsilon.$ ∎

Theorem. The necessary condition is also a sufficient condition.

Proof. Suppose the sequence $a_0, a_1, …$ satisfies the necessary condition. By the Weierstrass theorem we can define a bounded (***) linear functional $\psi: C([0, 1])\rightarrow \mathbb{R}$ by setting $\psi(x^k) = a_k.$ We claim that $\psi$ is a positive linear functional. Let $f\in C([0, 1])$ be positive. The Approximation Lemma tells us that there exist a sequence of polynomials $p_n,$ each non-negative on ${0, 1}$ and strictly positive on $(0, 1),$ that converge uniformly to $f.$ Because $a_1, a_2, …$ satisfies the necessary condition, we know $\psi(x^e(1 - x)^f)\ge 0$ for all valid $e, f.$ Then, by the Basis for Positive Cone Lemma and continuity of $\psi,$ we know that $\psi(f)\ge 0.$ Finally, we can conclude by using the Riesz-Markov-Kakutani representation theorem that there exists a Radon (hence positive) measure $\mu$ such that for all $f\in C([0, 1])$ \(\psi(f) = \int f(x)\ d\mu(x).\) We are done. ∎

Remark. (***) Is actually circular logic. We leave the fix as an exercise (:p).

References

  • Czarnecki, A., Federico, P. J., Van Vleck, F. S., Halperin, I., Parker, F. D., Day, G. W., Schubert, S. R., & Younglove, J. N. (1964). Mathematical Notes. The American Mathematical Monthly, 71(4), 403–413. https://doi.org/10.1080/00029890.1964.11992254
  • Dixmier, J. (1967). On some C-algebras considered by Glimm. *Journal of Functional Analysis, 1(2), 182–203.
  • Dixmier, J. (1977). C-algebras*. North-Holland.
  • Glimm, J. G. (1960). On a certain class of operator algebras. Transactions of the American Mathematical Society, 95(2), 318–340.
  • Rørdam, M., Larsen, F., & Laustsen, N. (2010). An introduction to K-theory for $C^$-algebras*. Cambridge University Press.
  • Wikimedia Foundation. (2023). Binomial coefficient. Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Binomial_coefficient